Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(12): 3737-3747, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614199

RESUMO

Identifying traits that exhibit improved drought resistance is highly important to cope with the challenges of predicted climate change. We investigated the response of state transition mutants to drought. Compared with the wild type, state transition mutants were less affected by drought. Photosynthetic parameters in leaves probed by chlorophyll fluorescence confirmed that mutants possess a more reduced plastoquinone (PQ) pool, as expected due to the absence of state transitions. Seedlings of the mutants showed an enhanced growth of the primary root and more lateral root formation. The photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, leading to an oxidised PQ pool, inhibited primary root growth in wild type and mutants, while the cytochrome b6 f complex inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone, leading to a reduced PQ pool, stimulated root growth. A more reduced state of the PQ pool was associated with a slight but significant increase in singlet oxygen production. Singlet oxygen may trigger a, yet unknown, signalling cascade promoting root growth. We propose that photosynthetic mutants with a deregulated ratio of photosystem II to photosystem I activity can provide a novel path for improving crop drought resistance.


Assuntos
Complexo de Proteína do Fotossistema II , Plastoquinona , Complexo de Proteína do Fotossistema II/metabolismo , Resistência à Seca , Oxigênio Singlete , Oxirredução , Fotossíntese/fisiologia , Clorofila , Transporte de Elétrons , Luz
2.
Physiol Plant ; 171(2): 260-267, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33215720

RESUMO

Drought induces stomata closure and lowers the CO2 concentration in the mesophyll, limiting CO2 assimilation and favoring photorespiration. The photosynthetic apparatus is protected under drought conditions by a number of downregulation mechanisms like photosynthetic control and activation of cyclic electron transport leading to the generation of a high proton gradient across the thylakoid membrane. Here, we studied photosynthetic electron transport by chlorophyll fluorescence, thermoluminescence (TL), and P700 absorption measurements in spinach exposed to moderate drought stress. Chlorophyll fluorescence induction and decay kinetics were slowed down. Under drought conditions, an increase of the TL AG-band and a downshift of the maximum temperatures of both, the B-band and the AG-band, were observed when leaves were illuminated under conditions that maintained the proton gradient. When leaves were frozen prior to the TL measurements, the maximum temperature of the B-band was upshifted in drought-stressed leaves. This shows a stabilization of the QB /QB •- redox couple in accordance with the slower fluorescence decay kinetics. We propose that during drought stress, photorespiration exerts a feedback control on photosystem II via the binding of a photorespiratory metabolite at the non-heme iron at the acceptor side of photosystem II. According to our hypothesis, an exchange of bicarbonate at the non-heme iron by a photorespiratory metabolite such as glycolate would not only affect the midpoint potential of the QA /QA •- couple, as shown previously, but also that of the QB /QB •- couple.


Assuntos
Secas , Complexo de Proteína do Fotossistema II , Clorofila , Transporte de Elétrons , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Quinonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...